This tool enables the visualization and analysis of hyperspectral data cubes by allowing users to interactively select points on a False Color Composite (FCC) image. Once the points are selected, the corresponding spectra are plotted for easy inspection, saving to library and to compare with other spectrums.
Repository: https://github.com/SomshuvraBasu/SpectraVis
The spectral visualization module enables comprehensive exploration of pixel spectra within a Hyperspectral Data Cube. This feature allows:
A robust spectral library management system that:
Advanced spectral matching capabilities utilizing the Spectral Angle Mapper (SAM) algorithm:
The Spectral Angle Mapper (SAM) is a geometrical method for spectral matching that:
git clone https://github.com/SomshuvraBasu/SpectraVis.git
cd SpectraVis
pip install -r requirements.txt
Run the tool with the following command:
python app.py
https://www.youtube.com/watch?v=JJNc62DRIW4
https://github.com/user-attachments/assets/78d11ec0-98e3-48b2-abfc-1819bcc77ae7
app.py: Entry point of the application.spectralToolsQT.py: Contains the main implementation classes for the application.utils/: Contains helper scripts for image generation and plotting.
analyseSAM.py: Compares Spectrums using Spectral Angle Mapper (SAM).FCC.py: Generates the FCC image from the hyperspectral cube.pixelSpectrum.py: Extracts the Spectral Data.imageSpectrum.py: Handles spectra plotting for selected pixels.canvasHandler.py: Handles the user interface canvas.spectralLib.py: Loads the spectral library.Tools/ : Contains the scripts for individual tools
visualise.py: Visualising the hyperspectral data cube.createLib.py : Create a spectral library from the data cube.compare.py: Compares Spectrums using Spectral Angle Mapper (SAM).data/: Contains the hyperspectral data cube and metadata files.